A Development Methodology for Concurrent Programs

Bryan Chow
Andy Fyfe
Daniel Maskit
Stephen Taylor
Jerrell R. Watts
Yair Zadik

Computer Science Department
California Institute of Technology

Caltech-CS-TR-94-16

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
16 SEP 1994 2. REPORT TYPE 16-09-1994 to 16-09-1994
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Development Methodolgy for Concurrent Programs £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 20
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Development Methodology for Concurrent
Programs !

Bryan Chow
Andy Fyfe
Daniel Maskit
Stephen Taylor
Jerrell R. Watts
Yair Zadik
Scalable Concurrent Programming Laboratory
California Institute of Technology

September 16, 1994

Abstract

This paper describes a development methodology for the design of concurrent
programs that provides a migration path from existing sequential C and FOR-
TRAN programs. These programs may be executed immediately, without change,
using the entire physical memory of a distributed memory machine or a network
of ATM-coupled shared-memory multiprocessors. Subsequent program refinements
may involve data and control decomposition together with explicit message pass-
ing to improve performance. Each step in the program development may utilize
new hardware mechanisms supporting shared memory, segmentation and protec-
tion. The ideas presented in this paper are currently being implemented within
the Multiflow compiler which is being targetted for the M-Machine. Although the

examples we present use the C programming language, the concepts will also be
available in FORTRAN.

IThe research described in this report is sponsored primarily by the Advanced Research Projects
Agency, ARPA Order number 8176, and monitored by the Office of Naval Research under contract
number N00014-91-J-1986.

1 Overview

The advent of low-cost shared-memory multiprocessors, coupled together using ATM
technology, demands that multicomputer technology be revisited. We seek a common
programming framework that can be used for both high-performance multicomputers
such as the Cray T3E and MIT M-Machine (3, 4], as well as networks of shared-memory
multiprocessors such as the SGI Power Challenge. In particular, we require that the
framework be able to utilize new hardware mechanisms for supporting shared memory,
segmentation and protection.

Our experience in working with a number of scientists on large-scale concurrent appli-
cations in Computational Fluid Dynamics, Particle Physics, Materials Science and Chem-
istry. In all these areas we have noticed a consistent pattern of reluctance to learn new
programming concepts and discard working code. Although reprogramming is expected
to express new concurrent algorithms and improve efficiency, recoding of basic sequential
physics routines is viewed as error-prone and undesirable. The experience of migrating
a code from a sequential implementation to a shared-memory implementation tends to

enforce scientists’ bias against rewriting their code to accommodate new architectural
ideas.

A welcome alternative has been adopted within a networked machine in the SGI Power
Challenge: sequential programs will execute immediately using the entire physical memory
of the machine, which appears to the programmer as a large virtual address space. This
approach has not generally been practical on distributed memory machines due to the
high cost of communication and synchronization. On the SGI machine, both control
and data may be subsequently decomposed in order to obtain increased concurrency and
utilize multiple processors. We have experimented with coupling these machines using
HIPPI connections. Unfortunately the shared memory view is only available within a
single cabinet.

Our experience in programming such machines for an NSF Grand Challenge problem
has been somewhat discouraging. Although it is possible to execute a sequential program
immediately, it typically performs poorly. To obtain good performance, it is necessary to
decompose the program data structures to obtain locality of reference. For the most part,
the program that eventually results is similar to what one would expect to obtain when
developing a message-passing program. The crucial difference is that scientists are able
to utilize the entire memory of the machine immediately and thus obtain useful results
quickly; thus they perceive less risk in this approach.

This paper describes a scalable programming methodology for parallel and distributed
machines that reduces the initial risk associated with parallel programming. The method-
ology provides simple tools by which a programmer may incrementally design and imple-
ment a new parallel program beginning with an existing sequential program or algorithm.
We do not propose, or intend to pursue, automated, compiler generated, parallel execu-
tion.

The intent of this programming methodology is to eliminate the need for programmers

to choose between parallel programming paradigms. Shared-memory programming will be
supported, as will message-passing, and the programmer will be allowed to decide which
paradigm is most appropriate for each section of their code. The transition between

paradigms will be smoothest if programs are written so as to isolate the exchange of data
between processes.

We distinguish four distinct stages of program development as depicted in Figure 1.
Initially, a sequential C or Fortran program is compiled and may utilize the entire physical
memory of the machine; sequential execution uses only a single computer in the network.
Subsequently, control of the program is decomposed by executing the program on all nodes
[5, 6]. Multiple processes are mapped to a single computer so as to overlap communication
and computation. Standard message-passing constructs are added to refine and improve

the program efficiency. Finally, the program can be transformed completely into a pure
message-passing code [7, 8, 9].

Sequential Program

\ Add Concurrency and Synchronization
Parallel Shared Memory

X Add Explicit Data Exchange to Critical Sections

Hybrid

\ Add Process Mapping and Communication

Message Passing

Figure 1: Stages of Program Development

This methodology can be supported on existing parallel machines such as the Cray
T3D and Intel Paragon, as well as ATM coupled networks of shared memory multiproces-
sors. In addition, this methodology will be portable to future parallel machines. In partic-
ular, we give details of the implementation of this methodology on the MIT M-Machine,
and explain how both the philosophy of the programming system and the available hard-
ware mechanisms influence design decisions. We provide an overview of the M-Machine
hardware, and describe how each stage of the methodology can be supported on this plat-
form. This discussion emphasizes support of hardware including tagged pointers, hardware
synchronization, global virtual address space, V-threads, and H-threads. Although collec-
tively these concepts are unique to the M-machine, variants of the concepts can be found
in other architectures including the Cray T3D. Finally, this programming model can be

viewed as the target for preprocessors providing high level abstractions through the use
of source-to-source transformations.

2 Abstract View of the M-Machine

This section provides an abstract description of the M-Machine hardware, with descrip-
tions of the mechanisms that are important to support our programming methodology.
The M-Machine provides four mechanisms not present in the J-Machine: a global vir-
tual address space to provide a global view of data and an address space substantially
larger than local physical memory, tagged pointers to provide memory protection and
segmentation, V-Threads to support multi-threaded operation, and H-Threads to support
instruction-level concurrency. Figure 2 provides an abstract view of the hardware that

highlights these features.

Incoming Message
Message
essag Interface

{

Integer
Integer Address Instruction
Unit Unit

Address
Instruction

Floating I -

Point Unit — Floating —

] Point _T

Instruction b | Context

Clusters H-Threads | \ Pointer

\\
Memory V-Threads In;tn.lctmn
Interface = System V—Threads ointers
Scheduling Queue
Hardware Computational Resources
Tagged Pointers:

I 1 l Permissions

Segment Length

Virtual Address Within Segmcnt‘

Data Words:

o]

64 bits of data, either integer or IEEE Floating Point I

Global Virtual Address Space

Figure 2: Abstract View of the M-Machine

Global virtual address space. This mechanism is supported through the memory
interface, which is a combination of hardware and system software. This interface has

the capability of determining where a referenced virtual address physically resides. If the
address is physically local, the requested operation can complete. Otherwise, the interface
will generate a message to request the access from the node where it is physically resident.
This interface is also in charge of managing the data cache at each node. This mechanism
provides a programmable mapping of virtual to physical addresses.

Tagged pointers. These provide two different types of functionality for memory
management. They allow the memory to be divided up into sized segments, and provide
protection against overrunning segment boundaries. The tags also allow each pointer to
have permissions associated with it. These permissions provide protection for access to
and execution of system code. They also protect the memory associated with one program
from that of another program. In addition, there is one bit associated with each word of
memory and registers which designates whether a word is data (0) or a pointer (1).

V-Threads. Explicit hardware support for multi-threading is supported using this
mechanism. A V-Thread is a hardware resource which consists of both data and state
registers for each of the node’s four clusters. There are four user V-Thread slots per node,
as well as two system slots. The hardware manages interleaving execution of instruction
streams from all slots. The system slots are used to execute kernel code to handle events
and exceptions. This includes both message reception and software management of the
memory interface.

When there are more threads in a node than can fit into the available slots, the runtime
system will provide a scheduling queue for inactive threads. Each thread consists of a
context pointer, which points to storage for the thread data, including the storage for
saving the thread state when it is removed from a thread slot, and up to four instruction
pointers, each of which points to the code being executed by the thread on a given cluster.

H-Threads. The superscalar architecture of the Multi-ALU Processor (MAP) [4]
allows up to 12 instructions to be issued each cycle. Within each V-Thread slot, there are
four independent H-Thread slots each of which controls execution at one cluster. Each of
these slots has its own instruction pointer and register file. There are facilities for allowing
inter-cluster communication to facilitate coordination between H-Threads. The compiler
will use the H-Thread slots to exploit instruction-level parallelism.

In addition to these features, the M-Machine provides support for hardware synchro-
nization and message-driven processes similar to that provided in the J-Machine [3].

3 Support for Sequential Programming

Sequential programming serves to utilize the
entire memory of the machine.

Execution of a sequential program is achieved by providing an environment which
appears, from the programmer’s perspective, to be equivalent to a UNIX-style workstation

on the M-Machine. A partition of the machine, along with a portion of virtual memory,
will be allocated for the job. The virtual memory will be mapped to some portion of
the physical memory present on the allocated nodes, and the executable image will be
downloaded into this area of memory. The program will then execute within a single
thread of control on one processor. Each node within the partition could be in use by
up to four different sequential jobs. Each job will be allocated 1/4, 1/2, 3/4 or all of the
available memory at a given node. The selection of the partition will be guided by the
total amount of memory required for the job.

3.1 Global Virtual Address Space

The global virtual address space is used to provide the appearance of the program having a
single contiguous address space, while distributing the program image across some subset
of the nodes in the partition for the job. After the partition is allocated, a node in the
partition is designated as node 0; this node executes the sequential code. The remaining
nodes are numbered consecutively from zero. If possible, all of the code and stack memory
is mapped into node 0, together with some portion of the global variables. The space to
be used for code and stack at node 0 will be controlled by using compiler/loader switches.
Any program state not mapped to node 0 is distributed across the remainder of the nodes
in the machine so as to maximize bandwidth for remote memory references as shown in
Figure 3. Memory for the stack and heap is not physically mapped until needed.

3.2 Tagged Pointers

Tagged pointers will be used to provide two different types of protection. First, they will
be used to prevent users from directly running or accessing system code. Secondly, they
will be used to prevent jobs from interfering with one another. This will be accomplished
by establishing the memory usable by the job as one segment, and ensuring that all
pointers given to the job by the system are within this segment.

3.3 V-Threads

The only use of user-level V-Threads for sequential programs will be one V-thread at
the node actually executing the program. There will also be some usage of system-level

threads to handle the communication necessary to transport pieces of the shared memory
from one node to another.

3.4 H-Threads

The compiler will do the best job it can of using all four H-Threads within the V-Thread
that is executing the program. A significant amount of this usage will be attained through

Node 0 Globals 0
(Center of Partition) X Globals 1
\ |
1
Node 1 Globals N-1
| Code 0
i
! - Code 1 Code 0 Limit
|
I 1
! Set by Compiler
: Code N-1 Switches
: Stack 0 ! .
| Stack O Limit
: Stack 1/Heap M
1
i .
I 1
I 1
1 1
| I
i |
1 I
1
|
Node N-1 Stack N-2 / Heap 2
Stack N-1/Heap 1
Memory for N Nodes Map of Program Memory
Numbered for Locality Divided by Nodes

Figure 3: Mapping a Sequential Program

using loop unrolling

3.5 Example

The code shown in Program 1 is a sequential program which solves Laplace’s equation
V20 = 0 using constant boundary conditions. In a sequential program, the memory is
distributed across the machine, but the locus of control is in one process which starts
execution at main().

4 Support for Shared Memory

Shared memory programming provides implicit concurrency and
commaunication, and explicit synchronization.

The programmers first concern for parallel execution occurs with the introduction of
the use of shared memory through control decomposition. This is supported by providing
multiple processes, and synchronization primitives. We assume there is no dependency
analysis and that the user is responsible for data consistency. To enforce consistency we
utilize barrier synchronization. In the future, the concepts presented here may be used
as the target for more sophisticated program analysis.

4.1 Global Virtual Address Space

As with the sequential model, the global virtual address space is used to provide the
appearance of the program having a single contiguous address space, while distributing
the program image across some subset of the nodes in the partition for the job. In
addition, each process has its own private copies of non-shared global variables.

4.2 Tagged Pointers

In addition to the protection of system code, and of jobs from one another, that is provided
for sequential programs, shared memory programs use tagged pointers to protect the
memory associated with each process from being accessed by other processes.

4.3 V-Threads

V-Threads are used as the unit of scheduling processes. Each process requires a V-Thread
slot somewhere in the machine to be able to execute. The run-time system will need to
provide some mechanism to ensure that all processes are executed.

double U[XDIM][YDIM];
double norm;

int main()
{ double termination;

BlockInitialize();

termination = BlockNorm()*EPSILON;

while(BlockNorm() > termination)
BlockTimestep();

return 0;

}

void BlockInitialize()
{ intigj;

for(i=0;i < XDIM; i++)

for(j = 0;j < YDIM; j++)
Ufi][i] = 0.0;

for(j = 0;j < YDIM; j++) {
U[0][}] = BOUNDARY;
U[XDIM-1][j] = BOUNDARY;

}

for(i=0;1i < XDIM; i++) {
U[i][0] = BOUNDARY;
U[i][YDIM-1] = BOUNDARY;

norm = 2*BOUNDARY*(XDIM+YDIM-1);
¥

void BlockTimestep()
{ inti,j;
double ul, u2, anorm=0.0;

for(j = 1;j < YDIM-1; j++)
for(i=1;1 < XDIM-1; i++) {
ul = U[i}j];
u2 = (UL+1][] + UL-1[] +
U[][j+1] + U[i]{-1])/4.0;
Ufi]{i] = u2;
anorm += fabs(u2-ul);

}

norm = anorm;

}

double BlockNorm()
{ return norm,;

}

/* U - dependent variables */
/* norm associated with block */

/* initialize a block */

/* terminate when norm reduced */
/* until termination */

/* execute timesteps on block */

/* then exit program */

/* initialize interior */

/* initialize j boundaries */

/* initialize i boundaries */

/* sum of boundary values */

/* sweep vertically */

/* sweep horizontally */

/* save old U(i,j) */

/* add j neighbors to */

/* 1 neighbors & average */
/* store new U(i,j) */

/* accumulate new norm */

/* associate norm with block */

Program 1: Sequential Dirichlet Code

4.4 H-Threads

The compiler will do the best job it can of using all four H-Threads within the V-Thread
that is executing the program. A significant amount of this usage will be attained through
using loop unrolling

4.5 Example

The code shown in Program 2 is a shared-memory version of Program 1. Only the parts
of the code which have changed are shown. Note that the global variable are marked as
shared to indicate that there is only one copy of these arrays for the entire computation
and they are shared between processes. Global variables which are not marked shared
are one-copy-per-process. When the program is loaded, a specified number of processes
are created. The number of processes remains fixed throughout the lifetime of the job. It
is possible to have more than one process for each processor. When the program begins
execution, all processes begin executing at main().

The functions Left() and Right() need to be written by the programmer to ensure
that each process accesses a disjoint portion of the shared arrays, and that the entire
array is accessed. These functions return to the caller the bounds of an array which are
treated as being local to a given process. To facilitate construction of these processes,
and to allow selective serialization of code, the functions Process() and Processes()
are added. These functions return, respectively, the process ID of the calling process,

and the number of processes in the job. Synchronization is performed using the function
Barrier().

shared double U[XDIM}[YDIM};
shared double norm[processes(}];

void BlockInitialize()

{

}

int 1,j;

for(i = Left(); i <= Right(); i++)
for(j = 0;j < YDIM; j++)
U[i}j] = 0.0;
for(j = 0;j < YDIM; j++) {
if(!Leftcut()) U[Left()][j] = BOUNDARY;
if(Rightcut()) U[Right()][j] = BOUNDARY;

}

for(i = Left(); i <= Right(); i++) {
Uli][0] = BOUNDARY;
U[i][YDIM-1] = BOUNDARY;

}
norm[Process()] = 2¥BOUNDARY*(XDIM+YDIM-1);
Barrier();

void BlockTimestep()

{

¥

int i, j;

int istart = Left() + (Leftcut() 2 0: 1),
iend =Right() - (Rightcut() 7 0: 1);
double ul, u2, anorm = 0.0;

double Uleft[YDIM], Uright[YDIM], Tleft, Tright;

if(Leftcut())
for(j = 0; j < YDIM; j++)
Uleft[j] = U[Left()-1][j;
if(Rightcut())
for(j = 0; j < YDIM; j++)
Uright[j] = U[Right()+1]{j];
Barrier();
for(j = 1;j < YDIM-1; j++)
for(i = istart; i <= iend; i++) {
Tright = (i < Right() ? U[i+1][j] : Uright[j]);
Tleft = (1 > Left() ? U[i-1]fj] : Uleft[j]);
ul = Uli][j;
u2 = (Tright + Tleft + U[i][j+1] + U[i][i-1])/4.0;
Ufi][j}=u2;

anorm += fabs(u2-ul);

norm[Process()] = anorm;
Barrier();
if(Process() == 0)
for(j = 1;j < Processes(); j++)
norm[0] += normlj];
Barrier();
norm{Process()] = norm[0];

double BlockNormy()

{
}

return norm[Process()];

/* U - dependent variables */
/* norm associated with block */

/* initialize interior */

/* initialize j boundaries */

/* initialize i boundaries */

/* wait until all processes are done */

/* get left boundary values */

/* get right boundary values */

/* wait until all boundaries have been copied */
/* sweep vertically */
/* sweep horizontally */

/* save old U(i,j) */

/* sum & average 1,j neighbors */
/* store new U(i,j) */

/* accumulate new norm */

/* store copy of local norm */
/* wait until sub-blocks have been updated */
/* sum local norms */

/* wait until new global norm has been computed */
/* get new global norm */

Program 2: Shared Memory Dirichlet Code

10

5 Support for Message-Passing

Message passing provides explicit movement of data and
mapping of control.

In the previous sections, access to non-local data is transparently provided by the
compiler and run-time system. Unfortunately, the fine granularity of data transport may
limit program performance for many applications. Explicit data movement or pre-fetch
primitives increase this granularity to meet the needs of the application, so that acceptable
performance can be obtained.

The message-passing system provided will be backwards-compatible with MDC on
the J-Machine for mapping of control. Movement of data will be supported by standard
MPI message-passing primitives [9]. In addition, we plan on providing library routines
for efficient global operations. Finally, a graph library will be used to support irregular
and/or adaptive computations by creating a network of arbitrarily connected processes.

The basic message-passing model is based on the concept of a process. Control is
mapped to specific processes by creating threads within the process using the mapping
annotation @ as in MDC; data is mapped to processes using MPI. The correspondence
between processes and hardware processors may be static and/or dynamic. The initial

number of processes present in the machine can be specified by the user at either link or
load time.

5.1 Global Virtual Address Space

The global virtual address space will be used to support the distribution of code as shown
in Figure 4. All global variables will be treated as one-copy-per-process with no coherence.
Transmission of data between processes will be handled via explicit message-passing. By
default, all code in a program will be treated as distributed, and attempts to fetch code
which is not physically local will result in implicit communication. The notion of function
replication described in [7] will be supported by mapping the range of global memory
containing specific functions into physically local memory at all nodes in a partition. This
same technique of virtual-to-physical mapping will be used to support global variables.

A process consists of a contiguous piece of virtual memory containing the address
space of all of the code within a program. Each process also has a pointer to the storage
for global variables within the process. Access to global variables will always be indirectly
through this pointer. If possible, the address ranges for the global variables and the

replicated functions are mapped into physically local memory. The physical storage for
the distributed functions is divided amongst the nodes in a partition.

When a process is created, it contains a pointer to the global variables, and pointers
to storage for a context and a stack. Both the context and stack are ideally completely
resident in physically local memory. However, if there is not sufficient local memory

11

Global Variables

Replicated Code

Virtual Node

Node Pointer

Context Pointer d

Stack Pointer Context

Thread

Stack

Physical Memory of
Node on which VN
Resides

= Memory possibly mapped to other nodes

Figure 4: Mapping an MDC Program

12

available, either one of these data items may have some of its storage mapped to physical
memory at another node.

5.2 Tagged Pointers:

Tagged pointers will be used to provide memory protection between jobs and processes.
They will also be used to protect code from being overwritten.

5.3 V-Threads

Each process is subdivided into threads. If there are four or fewer active threads at a
given processor, they will each occupy one V-Thread slot. If there are more than four
active threads, a software scheduling queue will be used to manage those threads which
are not resident in a V-thread slot. Once a thread is loaded into a slot, it will be allowed
to run to completion. A timeout interrupt will allow the runtime system to evict a thread
that has ceased making progress. As long as one of the H-threads within the process is
able to issue instructions, the thread will not be evicted.

5.4 H-Threads

As with the other models supported, H-threads will be exploited by the compiler to provide
instruction-level parallelism.

5.5 Example

The code shown in Program 3 is a message-passing version of Programs 1 and 2. In
this code, the global variables are one copy per node variables. The functions which are
added to this version are Send() and Recv() for moving data between processes, and
Globalsum() which gets a value from all processes, sums them, and returns the result to
all processes. As with Program 2, this program is written to be executed in all processes.
Message-passing programs are able to either have main() started at all processes, or to
use the MDC model which starts main() only at process 0.

6 Hybrid Programs

An important aspect of this methodology is that it is not necessary to choose between
programming models on a program-by-program basis. Programs can be constructed so
that the most appropriate paradigm is used for each phase of the computation.

13

double U[Right() - Left() + 1][YDIM];

double norm;

void BlockInitialize()
{ inti}j;

for(i = Left(); i <= Right(); i++)
for(j = 0; j < YDIM; j++)
U[i][j] = 0.0;
for(j = 0;j < YDIM; j++) {
if(!Leftcut()) U[Left()][j]l = BOUNDARY;
if('Rightcut())U[Right()][j] = BOUNDARY;
}
for(i = Left(); i <= Right(); i++) {
U[i]{o] = BOUNDARY;
U[i][YDIM-1] = BOUNDARY;

}
norm = 2*BOUNDARY*(XDIM+YDIM-1);

}
void BlockTimestep()
{ inti,j;

int istart = Left() + (Leftcut() 70: 1),

iend = Right() - (Rightcut() 7 0:1);
double ul, u2, anorm = 0.0;
double Uleft[YDIM], Uright[YDIM], Tleft, Tright;

if(Leftcut())
Send(U[Left()], YDIM, (Process() - 1) % Processes());
if(Rightcut())
Send(U[Right()}, YDIM, (Process() + 1) % Processes());
if(Leftcut())
Recv(Uleft, YDIM, (Process() - 1) % Processes());
if(Rightcut())
Recv(Uright, YDIM, (Process() + 1) % Processes());
for(j =1;j < YDIM-1; j++)
for(i = istart; i <= iend; i++) {
Tright = (i < Right() ? U[i+1][j] : Uright{j]);
Tleft = (i > Left() 7 Ufi-1]j] : Uleft[j]);

ul = U[i][i];
u2 = (Tright + Tleft + U[i][j+1] + U[]fj-1])/4.0;
Uli][j]=u2;

anorm += fabs(u2-ul);
Globalsum (&anorm, &norm, 1};

double BlockNormy()
{ returnnorm;

}

/* U - dependent variables */
/* norm associated with block */

/* initialize interior */

/* initialize J boundaries */

/* initialize I boundaries */

/* sum of boundary values */

/* send left boundary values */

/* send right boundary values */
/* receive left boundary values */
/* receive right boundary values */

/* sweep vertically */

/* sweep horizontally */

/* get right U value */

/* get left U value */

/* save old U(i,j) */

/* sum & average i,j neighbors */
/* store new U(i,j) */

/* accumulate new norm */

/* calculate new global norm */

Program 3: Message-Passing Dirichlet Code

14

As an example of the type of intermediate program that results from this methodology,
Program 4 is a hybrid shared memory/message-passing version of the example program.
In this example, each process operates on a particular portion of the shared U array,
based on the index extents provided by the Left() and Right() functions. In addition,
the Leftcut() and Rightcut() functions allow a process to determine if its portion of U
is on a boundary, so that it may adjust its initialization and boundary exchange behavior
accordingly. In BlockTimestep(), the nodes exchange boundary elements via shared
memory accesses. A Barrier() call is performed to guarantee that all boundaries have
been exchanged before the computation is continued. Finally, a global norm is calcu-
lated via Globalsum(). Both Barrier() and Globalsum() may be implemented using
message-passing for efficiency.

7 Coherency

To support the global virtual address space, one must provide some mechanism for ensuring
coherency of shared data objects. This can be done by maintaining a bit-field of accessors
for each cache line within a shared page [4]. When the page is modified, only those
processors that had actually obtained copies of the cache line would be notified of the
change. While this scheme is scalable in terms of limiting communication overhead, it
does not appear scalable in terms of storage overhead. On a thousand node machine, the
access lists would require 1024 words for a 512-word page. On a million node machine
this does not appear desirable.

It has been our experience that once data/control decompositions have been per-
formed, the maximum number of nodes requiring access to a shared data object is
application-specific and largely independent of the machine size. For example, in a two-
dimensional domain decomposed into blocks, only the processors governing subdomains
adjoining a particular block would require access to that block. Consequentially, it makes
sense to provide exact update lists for a only a fixed number of nodes. For example, one
might maintain a list of up to 32 accessors for each cache line. If the number of accessors
exceeds 32, then one would use a fized-size bit field to encode groups of accessors. For
example, on a 512-node machine, each bit of a 64-bit group accessor field would represent
an 8-node group. If any node within that group were to access a cache line, then all the
nodes within the group would be notified if the cache line were to change.

In this case, assuming the accessor ID’s are stored as 16-bit integers, the storage
overhead would be 512 words, but would not grow with the machine size. In short, we

believe it is more appropriate to optimize for programs which have been decomposed rather
than for those which have not.

15

shared double U{XDIM][YDIM];
double norm;

int main()

{

}

double termination;

BlockInitialize();

termination = BlockNorm()*EPSILON;

while(BlockNorm() > termination)
BlockTimestep();

return O;

void BlockInitialize()

{

}

int i,j;

for(i = Left(); i <= Right(); i++)
for(j = 0; j < YDIM; j++)
U[i}{] = 0.0;
for(j =0;j < YDIM; j++) {
if(Leftcut()) ULeft()][i] = BOUNDARY;
if('Rightcut()) U[Right()][j] = BOUNDARY;

}

for(i = Left(); i <= Right(); i++) {
U[i}[0o] = BOUNDARY;
U[i][YDIM-1] = BOUNDARY;

}
norm = 2*BOUNDARY*(XDIM+YDIM-1};
Barrier();

void BlockTimestep()

{

}

int i, j;

int istart = Left() + (Leftcut() 2 0: 1),

iend =Right() - (Rightcut() 7 0: 1);

double ul, u2, anorm = 0.0;

double Uleft[YDIM], Uright[YDIM], Tleft, Tright;

if(Leftcut())
for(j = 0; j < YDIM; j++)
Uleft[j] = U[Left()-1][j];
if(Rightcut())
for(j = 0; j < YDIM; j++)
Uright([i] = U[Right()+1]j;
Barrier();
for(j = 1;] < YDIM-1; j++)
for(1 = istart; 1 <= iend; i++) {
Tright = (i < Right() 7 Ufi+1][j] : Uright[j]);
Tleft = (i > Left() 7 U[i-1][i] : Uleftfj]);
ul = U[i][j};
u2 = (Tright + Tleft + U[i][j+1] + Ulil[j-1])/4.0;
U[i][j]=u2;
anorm += fabs(u2-ul);

norm = Globalsum(anorm);

double BlockNorm()

{
}

return norm;

/* shared grid */
/* local norm */

/* initialize a block */

/* terminate when norm reduced */
/* until termination */

/* execute timesteps on block */

/* then exit program */

/* initialize interior */

/* initialize j boundaries */

/* initialize i boundaries */

/* wait until all processes are done */

/* get left boundary values */

/* get right boundary values */

/* wait until all boundaries have been copied */
/* sweep vertically */
/* sweep horizontally */

/* save old U(i,j) */

/* sum & average i,j neighbors */
/* store new U(i,j) */

/* accumulate new norm */

/* calculate new global norm */

Program 4: Hybrid Shared Memory/Message-Passing Dirichlet Code

References

[1] Amarasinghe, S.P., Anderson, J.M., Lam, M.S. and Tseng C.W., “The SUIF Com-
piler for Scalable Parallel Machines”, Proceedings of the Seventh SIAM Conference
on Parallel Processing for Scientific Computing, February, 1995.

[2] Cooper, K.D., Hall, M. W., and Kennedy, K., “A Methodology for Procedure
Cloning” Computer Languages, 19(2), April 1993, pages105-118.

[3] Dally, W. J., et al., “The J-Machine: A Fine-grain Concurrent Computer,” Infor-
mation Processing 89, G. X. Ritter (ed.), Elsevier Science Publishers B.V., North
Holland, IFIP, 1989.

[4] Dally, W. J., et al., “M-Machine Architecture v1.0,” Massachusetts Institute of Tech-

nology, Artificial Intelligence Laboratory, Concurrent VLSI Architecture Memo 38,
February, 1994.

[5] Fox, Geoffrey, et. al., Fortran D Language Specification, Technical Report, Center for
Research on Parallel Computation, CRPC-TR-90079, 1990.

[6] High Performance Fortran Forum, High Performance Fortran Language Specification,
Scientific Programming, June, 1993.

[7] Maskit, Daniel, and Taylor, Stephen, “A Message-Driven Programming System for
Fine-Grain Multicomputers”, Software - Practice and Ezperience, 24, 953-980 (1994).

[8] Maskit, D., et. al., System Tools for the J-Machine, California Institute of Technology,
Department of Computer Science Technical Report, CS-TR-93-12, 1993.

[9] Message-Passing Interface Forum, MPI: A Message-Passing Interface Standard, May,
1994.

17

